EMMI WATCII
 VINTAGE RESTORATIONS

Seiko 6139A Movement Parts (1)

सf \Rightarrow Please see remarks on the next page.
As for all other parts not shown here, please refer to the basic calibre (Cal. No. 61061 25J Catalog No. 61.06-1 Green page).

Calibre No.	6139H1 \quadJewels 215	Style Name	
\Rightarrow Basic Calibre 6106 a $25 J$ Catalog No. $61.06-1$			
PART NO.	LIST OF MATERIALS	PART NO.	LIST OF MATERIALS
112523		576610577610	Pillar wheel Pillar wheel ring
122613	Barrel \& train-wheel bridge Center wheel bridge		
161805		578610	Pillar wheel jumper
171523	Pallet cock Balance cock	585610	Hammer
190610		586610	Hammer spring
193530	Framework for automatic device with ball-bearing	$\begin{aligned} & 587610 \\ & 781610 \end{aligned}$	Fly-back lever Hammer click
205613	Complete barrel with arbor	783610	Minute recording jumper
213612		784610	First coupling lever
224611	Center wheel \& pinion with cannon pinion	785610	Second coupling lever
225611	Cannon pinion	786610	Chronograph finfer
231618	Third wheel \& pinion	787610	Rest of chronograph finger
251619	Escape wheel \& pinion	886610	Intermediate minute recording wheel
261611	Minute wheel	888610	Center chronograph wheel
271611	Hour wheel Setting wheel	902610	Minute recording wheel
281611		022150	Stud screw
282611	Setting wheel Clutch whee!	022250	Screw for minute recording jumper
285614	Ratchet wheel	022257	Date correctsr spring
301611	Jewelled pallet fork \& staff	022269	Minute wheel bridge screw
310611	Balance complete with stud		(Cheese-head screw)
315611	Balance staffRoller with jewel	022351	Center wheel bridge screw
331610		022458	Serew for oscillating weight
341612 345612	Roller with jewel Regulator Stud holder	022459	Framework screw for automatic device with ball-bearing
$\begin{array}{r}345612 \\ \$ 354615 \\ \hline 35615\end{array}$	Stud holder	022467	device with ball-bearing Ratchet wheel screw
4357612 4	Winding stem	022468	Pallet cock screw
381611		022471	Click screw
383614	Setting lever with axle	022493	Bridge screw
384611	Yoke. (Clutch lever)Minute wheel bridge	022493	Chronograph bridge screw
387613		022494	Pillar wheel screw
388611		022494	First coupling lever screw
401616	Mainspring with slipping attachment	022662	Setting lever spring screw
4998613	Indicator wheel spring	022675	Holding screw for coupling levers
4999613		022677	Screw for day \& date driving wheei
014363	Diashock upper frame	022760	Minute wheel bridge screw
014364	Diashock lower frame		(Chamfer-head screw)
014365	Diashock hole jewel with trame	022760	Date dial guard screw
011210	Diashock cap jewel	022761	Dial screw
014317	Diashock spring	011167 011146	Upper hole jewel for center wheel Lower hole jewel for center wheel
015411	Diafix lower hole jewel with frame for escape wheel	011146 011306	Lower hole jewel for center wheel Upper hole jewel for 3rd wheel
011206	Diafix cap jewelDiafix spring	011306	Lower hole powel for 3rd wheel
015113		011406	Upper hole jewel for escape wheel
500521	Diafix spring Oscillating weight	011503	Upper hole jewel for pallet
505612	Transmission wheel	011503	Lower hole jewel for pallet Upper hole iewel for transmission whee:
823619 831611	Eccentric post Pawl lever with jewel	011147 011147	Upper hole jewel for transmission whee! Lower hole jewel for transmission wheel
831611	Pawl lever seat	011147 011424	Lower hole jewel for transmission wheel Upper hole jewel for center chronograph wheel
556611	Date finger	011544	Lower hole jewel for minute recording wheel
4801618	Date dial	023150	Tube for pallet cock screw (Cylinder type)
802611		023150	Tube for balance cock screw
808611	Date dial guardDate jumper	023151	Tube for bridge screw (Cylinder type)
810611		023170	Tube for pallet cock scriew (Recessed type)
817610	Intermediate date wheel	023178	Tube for bridge screw (Recessed type)
868611	Day finger	023186	Tube for 1st coupling lever screw
\% 8870529		023189	Tube for framework screw of automatic device
880611	Day star with dial disk	023190	Tube for chronograph bridge screw
883610	Date corrector Date corrector spring	023417	Date corrector pin
\%884611	Date corrector spring Holding ring for dial S	023443	Operating lever pin
963610	Snap for day star with dial disk	023443	Fly-back lever pin
972610	Day-date corrector finger	023444	Hammer click pin
571610	Operating lever Operating lever spring	023446	Intermediate minute reccrding wheel pin
575610		023990	Pillar wheel jumper pin

$\underset{\sim}{\omega}$ Please see remarks on the next page.
ltems in light letters are not shown in photos; those parts are interchangeable with the basic calibre
changeable with the basic calibre
(Cal. No. 6106 A 25 J Catalog No. 61.06 .1 Green page).

$\$ \Rightarrow$ Please see remarks on the next page
As for all other parts not shown here, please refer to the basic calibre (Cal. No. 6106A 25J Catalog No. 61-06-1 Green page).

$6139 A$		Style Name $\langle A u$	omatic Chronograph)
\Rightarrow Basic Calibre 6106 A 25 J Catalog No. 61.06 .1			
PART NO.	LIST OF MATERIALS	PART NO.	LIST OF MATERIALS
112525 122618 1618	Barrel \& train-wheel bridgeCenter wheel bridge	$\begin{aligned} & 586610 \\ & 587610 \end{aligned}$	Hammer spring Fly-back lever
122618 161805		587610 181610	Fly-back lever Hammer click
1161805		783610	Minute recording jumper
190610	Balance cock Chronograph bridge	784610	First coupling lever
193532	Framework for automatic device with ball-bearing	$\begin{aligned} & 785610 \\ & 786610 \end{aligned}$	Second coupling lever Chronograph finger
205613	Complete barrel with arbor	787610	Rest of chronograph finger
213612	Barrel arbor	886610	Intermediate minute recording wheel
224611	Center wheel \& pinion with cannon pinion	888610	Center chronograph wheel
225611	Cannon pinion	902610	Minute recording wheel
231618	Third wheel \& pinion	022150	Stud screw
251612	Escape wheel \& pinion	022250	Screw for minute recording jumper
261611	Minute wheel	022257	Date corrector spring screw
271611	Hour wheel	022269	Minute wheel bridge screw
281611	Setting wheel		(Cheese-head screw)
282611	Clutch wheel	022351	Center wheel bridge screw
285614	Ratchet wheel	022458	Screw for oscillating veeight
301611	Jewelled pallet fork \& staff	022459	Framework screw for automatic
310611	Selalance complete with stud		device with ball-bearing
315611	Balance staft	022467	Ratchet wheel screw
331610	Rotler with jewel Regulator	022468	Pallet cock screw
341612		022471	Click screw
345612	Stud holder	022493	Bridge screw
4354615	Winding stem	022493	Chronograph bridge screw
\#357612		022494	Pillar wheel screw
381611	ClickSetting lever with axle	022494	First coupling lever screw
383614		022662	Setting lever spring screw
384611	Setting lever with axle Yoke (Clutch lever)	022675	Holding screw for coupling levers
387613	Minute wheel bridgeSetting lever spring	022677	Screw for day \& date driving wheel
388611		022760	Minute wheel bridge screw
401616	Mainspring with slipping attachment		(Chamter-head screw)
F998613	Indicator wheel	022760	Date dial guard screw
\%999613	Indicator wheel spring	022761	Dial screw
014363	Diashock upper frameDiashock lower trame	011167	Upper hole jewel for center wheel
014364		011146	Lower hole jewel for center wheel
014365	Diashock hole jewel with frame	011306	Lower hole jewel for 3rd wheel
011210	Diashock cap jewel	011406	Upper hole jewel for escape wheel
014317	Diashock spring	011406	Lower hole jewel for escape wheel
500521	Oscillating weight	011503	Upper hole jewel for pallet
505612	Transmission wheelEccentric post	011503	Lower hote jewel for pallet
823619		011147	Lower hole jewel for transmission wheel
831611	Pawl lever with jewel	011424	Upper hole jewel for center chrolugraph
838611	Pawl lever seatDate finger		
556611		023150	Tube for pallet cock screw (Cylinder type)
4801618	Date dial	023150	Tube for balance cock screw
802611	Date driving wheel Date dial guard	023151	Tube for bridge screw (Cylinder type)
808611		023170	Tube for pallet cock screw (Recessed type)
810611	Date jumper	023178	Tube for oridge screw (Recessed type)
817610	Intermediate date wheelDay finger	023186	Tube for 1st coupling lever screw
868611		023189	Tube for tranework screw of automatic
4870538	Day star with dial disk		device
880611	Date corrector	023190	Tube for chronograph bridge screw
883610		023417	Date corrector pin
4884611	Holding ring for dial	023443	Operating lever pin
963610	Snap for day star with dial disk	023443	Fly-back leyer pin
972610	Day-date corisctor fingerOperating lever	023444	Hammer click pin
571610		023446	Intermediate minute recording wheel pin
575610	Operating lever spring Pillar wheel	023990	Pillar wheel lumper pin
576610			
577610	Pillar wheel ring		
578610	Pillar wheel jumperHammer		
585610			

is \Rightarrow Please see remarks on the next page.
Items in light letters are not shown in photos; those parts are interchangeable with the basic calibre
tems in light letters are not shown in photos; those parts are interchangeable with the basic calibre

Calibre No.	Jeweis 17	Style Name
		(Automatic Chronograph)

Remarks

Winding stem, Indicator wheel, Indicator wheel spring

\& 3.54615 . \qquad Used for other than models with rotating dial ring.
会357612
$\left.\begin{array}{r}4 \\ 4998613 \\ 4999613\end{array}\right\}$ \qquad Used only for models with rotating dial ring.

If the shapes of thes and (2) the case No.

Date dial

th801618 (White figures on black background)Used when both the crown and the date frame are located at 3 o'clock.
If the date dial is required in any other type, specity (1) Cal. No. (2) the crown position (3) the date frame position and (4) the dial No.

Day star with dial disk
s. 870538 (English \leftrightarrow Spanish) $\ldots . .$. Used when both the crown and the day frame are located When ordering any other type of the day star with dial disks, clearly mention the number printed on the disk. If the number is unknown, specify (1) Cal. No. (2) the crown position (3) the day frame position (4) the dial No. and (5) the national language.

Holding ring for dial Measure the total thickness and the outside diameter
 If the holding ring for dial is required in any other type, specify (1) Cal. No. and \quad (2) the dial No.

6139A

1 Specifications	
Casing diameter	27.00 mm
Height	6.65 mm
Vibrations per hour	21,600

Vibrations per hour
Automatic winding
Calendar (Day \& date, bilingual changeover mechanism for day indication, instant day \& date setting device)
Chronograph ($1 / 5$ second, one revolution in 60 seconds, 30 minutes totalizer, accumulated)

2 Features

An advanced automatic winding chronograph
6139A Automatic Chronograph is a high grade functional watch in which a chronograph mechanism and an automatic wind ing mechanism are compactly assembled Addition of a calendar mechanism does not affect watch size and thickness. Easy-to-use chronograph mechanism
The second hand and minute recorder can be activated by depressing the first button. Measured time can be accumulated just as with a regular chronograph.
Either one of two languages provided can Either one of to indicate the days of the week.
Numerous function and design features In addition to 30 - to 70 -meter depth waterproofing (70 -meter depth waterproof watch employs HARDLEX special reinforced glass), a variety of functions are provided such as tachymeter, pulsimeter, and rotating dial ring.

3 Disassembly and assembly

Disassemble the watch according to Figs. (1) \rightarrow (3)

Assemble by reversing the above: Figs. (33) \rightarrow (1)

Installation of the automatic winding mechanism varies compared with conventional watches.
The automatic winding mechanism should be installed after setting the movement with hands in the case.

4 Lubrication

Colored symbols in the illustrated figures indicate the types of oil, its quantities to be applied, and lubricating points.

- Moebius Synt-A-Lube
- Seiko watch oil S-4

Oil quantity

- Extremely small quantity
- Normal quantity
en Sufficient quantity
$\boldsymbol{\otimes}$ Oil must not be applied
Note: Unindicated portions do not require lubrication

6139A Calendar Mechanism

the crown after setting the sap for day star. - Snap for day star with diald disk. (21)

(36)
 dial guard, perform carefully to avoid
ing the chronograph minute hand pin.
$\underbrace{}_{\text {Date jumper } 26}$
Lubricate the plate contacting surface
(29)
(18)

6139A Chronograph Mechanism,

1. Items to be checked before assembling the jewelled pallet fork and staff, after setting the chronograph bridge.
(1) Confirm that free running force is transmitted unaffectedy. Even though no roll
back motion exists, as long as it functions smoothly there is no problem.
(2) Check for meshing condition of the first
and second coupling levers $(6139 \mathrm{~A}-8)$.
2. Items to be checked after assembling the balance
(1) Check for strength and Reight of the (2) Check for meshing position of the
(2) Check for meshing position of the
chronograph finger (6139A-9).
(3) Check for contatting condition of the
hammer and hearts ($6139 \mathrm{~A}-10$).

It is unnecessary to remove the minute recording
jumper and screws. Move them only when adjusting jumper and screws. Move them only when adjusting
the minute recording jumper.
) Chronograph briago
Note: 1. Mesh the intermediate minute recording wheel and the minute recording wheel.
2. Interlock the minute recording wheel and the minute recording jumper. 3. Interlock the hammer click and the
fly-back lever pin. fly-back lever pin.
(40)

(42) Jewelled pallet fork and staff Be sure to remora the pallet cock and mainspring.
 (6139A-5). Completely set the center portion of the spring around the tube
the barrel and train wheel bridge.

52 The pin of the second coupling lever is eccentric; do not rotate it except during adjustment.
Assemble the coupling levers in a starting condition to prevent damaging the fourth wheel.

entric; do

Screw for minute recording jumper

-6139A-4-

6139A Checking and Adjusting the Chronograph Mechanism-1

I. Checking and adjusting the coupling levers

1. When the up and down interlocking condition between the coupling leyers and clutch ring is incorrect, it will cause various troubles such as damage to clutch spring (when interlocked deeper), halting, or free run (when interlocked shallower). Remedy by effecting the following shallower).
procedures.
(1) Confirm that the coupling lever's Point B comes to a lower level than the clutch ring's Point A when kept at "run" and the bridge side is turned up.
(2) Raise the fourth wheel and pinion while in a stopped condition, confirming that the clutch ring and fourth wheel are completely separated. (Fig. 13)
Adjusting:
Adjusting: Adjust vertical positioning of the upper and Adjust vertical positioning of the upper and
2. Clearance of coupling levers and clutch ring. Checking:
Clearance between clutch ring and first coupling lever and clearance between clutch ring and second coupling lever must be identical (Fig

II. Checking and adjusting minute recording jumper
3. Correct positioning of minute recording jumper Confirm that the three teeth of minute recor ding wheel can be observed symmetrically in the position check hole. (Fig. 15)
Adjusting:
Loosen the screw, and adjust the minute record ing jumper by moving it to the right and left.
4. Height of the minute recording jumper

Checking:
(1) Elevation of the minute recording jumper from the upper level of minute recording wheel must be less than half the thickness of the minute recording jumper (Fig. 16)

IFia

(Fig. 14

6139A Checking and Adjusting the Chronograph Mechanism-2
(2) By turning the minute recording wheel, confirm that the lower surface of the minute recording jumper does not contact top of the screw of first coupling lever. (Fig. 17)
Adjusting
Bend the root of minute recording jumper either up or down. (Fig. 18)
3. Force of minute recording jumper

Insufficient force of minute recording jumpe pressing against minute recording wheel results in retarding advance of the chronograph minute hand at forwarding time in minutes. If the force is too strong, it causes the chronograph minute hand to stop. Pay close attention to this.
Checking:
Check force of the minute recording jumper by strength of the mainspring.
(1) After completely releasing the mainspring; start it by winding the ratchet wheel just halfway, confirming that the chronograph finger adequately activates the minute recording wheel.
(2) Confirm that the minute recording jumper precisely regulates advance of the minute recording wheel. (Fig. 19)
Adjusting:
Bend the base of the minute recording jumper in either direction as indicated by arrows. (Fig. 20)
III. Adjusting the chronograph finger

1. Locking contact of chronograph finger

Checking:
After correctly adjusting the position of minute recording jumper (refer to Adjust II-1), rotate the chronograph finger forward in a stopped condition, checking the degree with which the chronograph finger contacts the intermediate minute recording wheel.
(1) The amount of such contact should be more than $1 / 4$ but less than $1 / 2$ the size of the flat end of the chronograph finger. (Fig. 21-A) (2) The chronograph finger should not touch other teeth on both sides of the tooth contacting the intermediate chronograph wheei.
Adjusting:
First straighten out the chronograph finger spring (the oblique lined stem in Fig. 22); then bend the basic portion (encircled) to effect desirable contact.

(Fig. 20)

6139A Checking and Adjusting the Chronograph Mechanism-3
2. Position of the chronograph finger

If the position of the chronograph finger rotat ing direction is abnormal, forwarding time of the chronograph minute hand becomes defective around the " 0 " second.
Checking:
After resetting the hands, point C of the chronograph finger must be straight on line between points A and B of the position setting hole. (Fig. 23)
Adjusting:
While keeping the hammer depressed, turn the adjusting pin of chronograph finger attached to the second heart, until the correct position for point C is obtained.
(Note) Be careful to avoid breaking the pivot of center chronograph wheel which sometimes occurs if the pin is pressed too strongly.
IV.Checking and adjusting contacting condition of th hammer and hearts
When the hands are reset, there should be no clearance between the setting surface of the hammer and the second heart. Suitable clearance between setting surface of the hammer and the minute heart is 0.02 mm . Should the clearance be excessive, the hands will not be reset to the " 0 " second. Checking:
Actually, it is difficult to observe clearances be tween the hearts and the hammer, so clearances should be judged by the degree of shake observed when the intermediate minute recording wheel, minute recording wheel, and center chronograph wheel are reset to their original position. (Fig. 24)

1. Adjust clearance between the second heart and the hammer to zero. In a condition that the hammer is depressed (i.e. in a condition that the hearts and the hammer are contacted), no shakes should occur when slightly moving the center chronograph wheel to the right and left.
2. Check clearance of the minute heart by rotating the minute recording wheel to the right and left. Table 1)
A. Keep the hammer continuously depressed. Teeth of the intermediate minute recording wheel should not pass over the crest of the chronograph finger
B. Similarly, teeth of the minute recording wheel should not pass over the crest of the minute recording jumper

6139A Checking and Adjusting the Chronograph Mechanism-4
Adjusting:
When shakes exist in the second heart:
Polish setting surface of the hammer contacting the minute heart.
When shake of the minute heart is excessive (when passing over the crest):
Polish setting surface of the hammer contacting the second heart.
(Note) When polishing the hammer, slightly file the point parallel to the setting surface, finishing to a mirrored surface. (Fig. 25)
V. Adusting pressing strength of the second button (fly-back button)

After installing the movement and the buttons on the case, check pressing strength of the second button.
Adjust pressing strength to the same as that of the first button. When the pressing strength is too strong, it will damage the chronograph mechanism.

Repairing the Chronograph Mechanism

I. Repairing Method

1. Center chronograph wheel--Damage due to:
(1) Broken clutch spring
(2) Strength of clutch spring too weak

- In these cases, the chronograph second hand either fails to move or moves irregularly.
(3) Broken chronograph finger

Broken chronograph finger does not advance the chronograph minute hand.
If (1), (2) or (3) occur, replace the center chronograph wheel, referring to Checking and Adjusting the Coupling Levers mentioned in item I, Adjusting the Chronograph Finger mentioned in III, and Checking and Adjusting the Contacting Condition of the Hammer and the Hearts mentioned in IV of Chronograph Adjustment.
2. Loose chronograph second hand

If the chronograph second wheel does not reset to the " 0 " position when depressing the button, confirm the following point.
Check if the second hand moves when the second button is pressed. If it moves, the cause is due to loose contact of the second hand and center chronograph wheel axle. To correct this, reinsert the second hand to the extent that does not cause second hand catching.

(Fig. 25)
(Fig. 26)

Adjusting:
Bend tip of the hammer click by holding the pit portion. Do this carefully; the parts are apt to be damaged when it is bent too much.
3. Poor revoiving efficiency of the fourth wheel If the gear-train is not functioning well in a stopped condition, repair the watch after confirming the following points.
(1) Check for correct shakes
(2) Check for friction between each wheel
(3) Check for correct revolving condition of the fourth wheel
As to confirming item (3), first install the chronograph bridge in a condition that the coupling levers are secured to the barrel and train wheel bridge. Next, as shown in Fig. 27, set the fourth wheel in a starting condition with the bosom side of the barrel and train wheel bridge built in the chronograph bridge upward. Next, after confirming clearance between the fourth wheel and clutch ring in a stopped condition, turn the fourth wheel and pinion with a soft brush to check whether or not it turns smoothly. If revolution is defective, clean and lubricate it (refer to Fig. 11) and reconfirm operation.

6139A After-Sales Service-Trouble-Shooting

The chronograph mechanism is very precisely constructed.
When repair is requested, it is important to listen to the
customer describe the watch condition. Further, it proves especially valuable in ensuring correct repair to classify the
cause according to the following table, based on details described by the customer. Listing malfunctions in the chronograph mechanism, their causes, and corrective actions, this table can be used effectively.
Phenomena
Causes
Corrective action

Regarding repairing and adjusting of Cal. 6139A, we have already mentioned them in the SEIKO TECHNICAL GUIDE. However, on these pages, items to be checked on watch stopping, and repairing and adjusting for each item, are compactly arranged to facilitat further comprehension.

EXPLANATIONS REGARDING WATCH STOPPING AT 58 SECOND POSITTION

- A watch stopping at 58 second position is not malfunctional When the mairspring winding is insufficient the second hand always stops at the 58 second position. But this is not a malfunction.
\bigcirc The reason why a watch stops at 58 second position:
In the 6139 A , when the second hand moves from 58 to 60 second, the mechanism is devised so that the chronograph minute hand moves one graduation. At the 58 second positio where the chronograph minute hand moves, a larger mainspring force is required.
Consequently, when the mainspring is nearly unwound, 6139 A always stops at the 58 second position.

O A watch in the following condition is defective.
When the second hand stops at the 58 second position in spite of a fully wound mainspring, the watch is defective. Repair and adjust it according to the following procedures.

1. Items to be checked before beginning repair works. * Checking the number of remaining windings of the mainspring
2. When the balance stops at the 58 second position.
3. When the second hand stops at the 58 second position and the balance is still moving.

-

[^0]When you are requested to repair slipping of the fly-back position, please refer to the following procedures.
position, please refer to the following procedures.
Explanations in these pages can be utilized in common to both 6138A and 6139A.

- Check Points Before Starting Repair
- When Chronograph Second Hand does not Return to "0" Position
- When Both Chronograph Second Hand and Minute Hand do not Correctly Return
- Overall Check Points after Repair

Checking, Repairing and Adjusting Methods for Slipping of Chronograph Second Hand at the
Fly-Back Position of Cal. 6138A and 6139A

If the chronograph second hand does not return to the " 0 " position when pushing the fly-back button (2nd button), confirm that the condition
is Case 1 or Case 2, before repairing

Overall Check Points After Repair

2. Clearance between second hand and minute hand Create clearance double the thickness of the second After cornpletely pushing in the second hand, adjust the clearance by bending the second hand upward.

1. After removing the automatic winding section, set the movement on the movemen
holder(S-500) for Cal. 6139 .
2. After setting the second hand (or chronograph minute and hour hands) at the " 0 " position, push it in lightly while keeping the fly-back button completely depressed.
(Fig. 1) (Fig. 1)'
3. After confirming the fly-back position of the second hand, completely push in the
second second hand.

Note: Since the tip of the center chronograph wheel is
shaped as shown in Fig.2, he second hand will be
loosend completely setting it.

1 Specifications	
Casing diameter	27.00 mm
Height	6.65
Vibrations per hour	21,600
Automatic winding	
Chronograph ($1 / 5$ second, one revolution in 60 seconds, 30 minutes totalizer, accumulated)	
2 Features An advanced automatic winding chronograph	
6139A Automatic Chronograph is a highgrade functional watch in which a chronograph mechanism and an automatic winding mechanism are compactly assembled.	
Addition of a calendar mechanism does not affect watch size and thickness.	
Easy-to-use chronograph mechanism	
The second hand and minute recorder can be activated by depressing the first button. Measured time can be accumulated just as with a regular chronograph.	
Either one of two languages provided can be chosen to indicate the days of the week.	
Numerous function and design features	
In addition to 30 to 70 -meter depth waterproofing (70-meter depth waterproof watch employs HARDLEX special reinforced glass), a variety of functions are provided such as tachymeter, pulsimeter, and rotating dial ring.	
3 Disassembly and assembly Disassemble the watch according to Figs. (1) \rightarrow (27) Assemble by reversing the above: Figs. (35) \rightarrow (1) Installation of the automatic winding mechanism varies compared with conventional watches. The automatic winding mechanism should be installed after setting the movement with hands in the case.	

4 Lubrication

Colored symbols in the illustrated figures indicate the types of oil, its quantities to be applied, and lubricating points.

- Moebius Synt-A-Lub
- Seiko watch oil S-4

Oil quantity

- Extremely small quantity
- Extremely small q

Normal quantity
$\boldsymbol{\otimes}$ Sufficient quantity
Note: Unindicated portions do not require lubrication.

(10)

(11)

To assemble the pawl lever, first assemble it to the framework assemble it to the framework
after lubricating the eccentric after lubricating the eccentric
pin; then set it on the movepin; then set it on the movework, as shown in Fig. 2. (The

Then lock the teeth of transmis- (Fig. 2) Do not lubricate
sion wheel with the teeth of

The two buttons \mathbb{D} must be depressed simultaneously to eith ?move or insert
the case ring. the case ring.

6139A Calendar Mechanism

6139A Chronograph Mechanism,

Starting

When depressing the first button, the pillar wheel is forwarded one tooth and the pillar wheel contacting portion of the first coupling lever falls between the columns, and the first and second coupling levers are separated from the clutch ring. The clutch ring is pressed to the fourth wheel by the clutch spring, and the second hand starts moving.
When the second hand makes a complete turn, the chronograph finger forwards the minute recording wheel one tooth through the intermediate minute recording wheel, operating the minute hand one graduation. Stopping
When depressing the first button in a started condition, the first and second coupling levers operate, raising the clutch ring. The clutch ring is separated from the fourth wheel, and the second hand comes to a halt. This time, the fourth wheel continues to rotate. Accumulation
When further depressing the first button in When further depressing the first button in
a stopped condition, the mechanism rea stopped condition, the mechanism re-
turns to a starting condition (Fig. 7), and the chronograph hands restart from its stopped position, the measured time being accumulated.

Resetting

When depressing the second button in a stopped condition, the hammer is operated through the fly-back lever striking the second and minute hearts, and the hands are reset to the " 0 " position.
(When the hammer is on the column, i.e. (When the hammer is on the column, i.e.
the hands are in motion, the second

To prevent chipping, install the pillar wheel on

Disassemble and (54) after the pillar wheel is assembled.

The operating lever, fly-back lever, and pillar wheel jumper are driven into the bridge.
To prevent chipping, install the pillar wheel on
 button (fly-back button) cannot be de- (Fig. 9) pressed.)

Lubricating the fourth wheel and pinion: Set the center chronograph wheel on the staking tool as shown in the diagram; then lubricate the wheel with a pair of tweezers.

(Fig. 11)

Berrel and train wheel bridge $\begin{gathered}\text { screws (3 pcs) }\end{gathered} 5$ When disassembiling and assem bling the
bridge, pay attention not to doform the bridge, pay attention not to deform the
clutch spring, chronograph finger and clutch spring, chronograph
the fourth wheel and pinion.

$-6139 \mathrm{~A}-6-$

6139A Checking and Adjusting the Chronograph Mechanism-1

I. Checking and adjusting the coupling levers

1. When the up and down interlocking condition between the coupling levers and clutch ring is incorrect, it will cause various troubles such as damage to clutch spring (when interlocked deeper), halting, or free run (when interlocked shallower). Remedy by effecting the following shallower).
procedures
Checking:
(1) Confirm that the coupling lever's Point B comes to a lower level than the clutch ring's Point A when kept at "run" and the bridge side is turned up.
(2) Raise the fourth wheel and pinion while in a stopped condition, confirming that the clutch ring and fourth wheel are completely separated. (Fig. 13)
Adjusting:
Adjusting: Adjust vertical positioning of the upper and
lower hole jewel of center chronograph wheel.
2. Clearance of coupling levers and clutch ring. Checking:
Clearance between clutch ring and first coupling lever and clearance between clutch ring and second coupling lever must be identical (Fig.

Adjusting:

Adjust by turning the eccentric pin (*) of the second coupling lever.

II. Checking and adjusting minute recording jumper

1. Correct positioning of minute recording jumper Confirm that the three teeth of minute recording wheel can be observed symmetrically in the position check hole. (Fig. 15)
Adjusting:
Loosen the screw, and adjust the minute recordLoosen the screw, and adjust the minute reco
ing jumper by moving it to the right and left.
2. Height of the minute recording jumper
3. Height of
Checking:

Checking:
(1) Elevation of the minute recording jumper from the upper level of minute recording whee! must be less than half the thickness of the minute recording jumper. (Fig. 16)

Center chronograph wheel
(Fig. 12)

(Fig. 16)
(2) By turning the minute recording wheel, confirm that the lower surface of the minute recording jumper does not contact top of the screw of first coupling lever. (Fig. 17)
Adjusting
Bend the root of minute recording jumper ither up or down. (Fig. 18)
3. Force of minute recording jumper

Insufficient force of minute recording jumper pressing against minute recording wheel result in retarding advance of the chronograph minute hand at forwarding time in minutes. If the force is tou strong, it causes the chronograph minute hand to stop. Pay close attention to this.
Checking:
Check force of the minute recording jumper by strength of the mainspring.
(1) After completely releasing the mainspring start it by winding the ratchet wheel jus halfway, confirming that the chronograph finger adequately activates the minute re cording wheel.
(2) Confirm that the minute recording jumper precisely regulates advance of the minute recording wheel. (Fig. 19)
Adjusting:
Bend the base of the minute recording jumper in either direction as indicated by arrows. (Fig. 20)
III. Adjusting the chronograph finger

1. Locking contact of chronograph finger Checking:
After correctly adjusting the position of minute recording jumper (refer to Adjust II-1), rotate the chronograph finger forward in a stopped condition, checking the degree with which the chronograph finger contacts the intermediate minute recording wheel.
(1) The amount of such contact should be more than $1 / 4$ but less than $1 / 2$ the size of the flat end of the chronograph finger. (Fig. 21-A)
(2) The chronograph finger should not touch other teeth on both sides of the tooth contacting the intermediate chronograph wheel.

Adjusting

First straighten out the chronograph finger spring (the oblique lined stem in Fig. 22); then bend the basic portion (encircled) to effect desirable contact.

(Fig. 20)

Position of the chronograph finger If the position of the chronograph finger rotating direction is abnormal, forwarding time of the chronograph minute hand becomes defective around the " 0 " second
Checking:
After resetting the hands, point C of the chronograph finger must be straight on line between points A and B of the position setting hole. (Fig. 23)
Adjusting:
While keeping the hammer depressed, turn the adjusting pin of chronograph finger attached to the second heart, until the correct position for point C is obtained.
(Note) Be careful to avoid breaking the pivot o center chronograph wheel which sometimes occurs if the pin is pressed too strongly.
IV.Checking and adjusting contacting condition of the hammer and hearts
When the hands are reset, there should be no clearance between the setting surface of the hamclearance between the setting surface of the ham-
mer and the second heart. Suitable clearance between setting surface of the hammer and the minute heart is 0.02 mm . Should the clearance be excessive, the hands will not be reset to the " 0 " second.
Checking
Actually, it is difficult to observe clearances between the hearts and the hammer, so clearances should be judged by the degree of shake observed when the intermediate minute recording wheel minute recording wheel, and center chronograph wheel are reset to their original position. (Fig. 24)

1. Adjust clearance between the second heart and the hammer to zero. In a condition that the hammer is depressed (i.e. in a condition that the hearts and the hammer are contacted), no shakes should occur when slightly moving the center chronograph wheel to the right and left.
2. Check clearance of the minute heart by rotating the minute recording wheel to the right and left (Table 1)
A. Keep the hammer continuously depressed. Teeth of the intermediate minute recording wheel should not pass over the crest of the chronograph finger.
B. Similarly, teeth of the minute recording wheel should not pass over the crest of the minute recording jumper.

$$
\text { Table } 1
$$

Adjusting
When shakes exist in the second heart
Polish setting surface of the hammer contacting the minute heart.
When shake of the minute heart is excessive (when passing over the crest):
Polish setting surface of the hammer contacting the second heart.
(Note) When polishing the hammer, slightly file the point parallel to the seiting surface, finishing to a mirrored surface. (lig. 25)
V. Adusting pressing strength of the second button (fly-back button)

After installing the movement and the buttons on the case, check pressing strength of the second button.
Adjust pressing strength to the same as that of the first button. When the pressing strength is too trong, it will damage the chronograpt mechanism.

Repairing the Chronograph Mechanism

I. Repairing Method

1. Center chronograph wheel-Damage due to
(1) Broken clutch spring
(2) Strength of clutch spring too weak

In these cases, the chronograph second hand either fails to move or moves irregularly
(3) Broken chronograph finger

Broken chronograph finger does not advance the chronograph minute hand.
If (1), (2) or (3) occur, replace the center chronograph wheel, referring to Checking and Adjusting the Coupling Levers mention ed in item I, Adjusting the Chronograph Finger mentioned in III, and Checking and Adjusting. the Contacting Condition of the Hammer and the Hearts mentioned in IV of Chronograph Adjustment.
Loose chronograph second hand
If the chronograph second wheel does not reset to the " 0 " position when depressing the button confirm the following point.
Check if the second hand moves when the second button is pressed. If it moves, the cause is due to loose contact of the second hand and center chronograph wheel axle. To correct this reinsert the second hand to the extent that doe not cause second hand catching.

(Fig. 25)
(Fig. 26)

Adjusting:
Bend tip of the hammer click by holding the pit portion. Do this
carefully; the parts are apt io be damaged when it is bent too much.

3. Poor revolving efficiency of the fourth wheel If the gear-train is not functioning well in a stopped condition, repair the watch after confirming the following points:
(1) Check for correct shakes
(2) Check for friction between each wheel
(3) Check for correct revolving condition of the fourth wheel
As to confirming item (3), first install the chronograph bridge in a condition that the coupling levers are secured to the barrel and train wheel bridge. Next, as shown in Fig. 27, set the fourth wheel in a starting condition with the bosom side of the barrel and train wheel bridge built in the chronograph bridge upward. Next, after confirming clearance between the fourth wheel and clutch ring in a stopped condition, turn the fourth wheel and pinion with a soft brush to check whether or not it turns smoothly. If revolution is defective, clean and lubricate it (refer to Fig. 11) and reconfirm operation.

6139A After-Sales Service-Trouble-Shooting

The chronograph mechanism is very precisely constructed. When repair is requested, it is important to listen to the customer describe the watch condition. Further, it proves
especially valuable in ensuring correct repair to classify the
ause according to the following table, based on details described by the customer. Listing malfunctions in the chronograph mechanism, their causes, and corrective actions, this table can be used effectively.

Regarding repairing and:ljusting of Cal. 6139 A , we have already mentioned them in the SEIKO TECCHNICAL GUIDE. However, on these pages, items to be checked on watch stopping, and repairing and adjusting for each item, are compactly arranged to facilitate further comprehension.

EXPLANATIONS REGARDING WATCH STOPPING

 AT 58 SECOND POSITION- A watch stopping at 58 second position is not malfunctional. When the mainspring winding is insufficient the second hand always stops at the 58 second position.
But this is not a malfunction.
- The reason why a watch stops at 58 second position:

In the 6139A, when the second hand moves from 58 to 60 second, the mechanism is devised so that the chronograph minute hand moves one graduation. At the 58 second position where the chronograph minute hand moves, a larger mainspring force is required.
Consequently, when the mainspring is nearly unwound, 6139 A always stops at the 58 second position.

O A watch in the following condition is defective.
When the second hand stops at the 58 second position in spite of a fully wound mainspring, the watch is defective. Repair and adjust it according to the following procedures.

1. Items to be checked before beginning repair works. * Checking the number of remaining windings of the mainspring
2. When the balance stops at the 58 second position.
3. When the second hand stops at the 58 second position and the balance is still moving.

Checking, Repairing and Adjusting Methods

for Slipping of Chronograph Second Hand at the
Fly-Back Position of Cal. 6138A and 6139A

Checking, repairing, and adjusting methods of watch stopping at 58 second position of Cal. 6139 have been explained in detail in $6139 \mathrm{~A}-14$. On these pages, only slipping of chronograph second hand at the fly-back position is described.

When you are requested to repair slipping of the fly-back position, please refer to the following procedures.
Explanations in these pages can be utilized in common to both 6138A and 6139A.

Check Points Before Starting Repair
When Chronograph Second Hand does not Return to " 0 ""
Position
When Both Chronograph Second Hand and Minute Hand do not Correctly Return

Overall Check Points after Repair

Checking, Repairing and Adjusting Methods for Slipping of Chronograph Second Hand at the

If the chronograph second hand does not return to the "0" position when pushing the fly-back button (2nd is Case 1 or Case 2, before repairing.

[^0]: Checking, repairing, and adjusting methods of watch stopping at
 58 second position of Cal. 6139 have been explained in detail in 58 second position of Cal. 6139 have been explained in detail in hand at the fly-back position is described.

